We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Klaus-Shaw potentials for the Ablowitz-Ladik lattice

Formal Metadata

Title
Klaus-Shaw potentials for the Ablowitz-Ladik lattice
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Some PDEs and ODEs admit a Lax pair (a pair of linear operators) to be completely solve the equation. One of these operators defines a spectral problem. For some equations (as for the Korteweg-deVries, KdV, equation) this operator is self-adjoint and, consequently, its discrete spectrum is real. However, for some other equations, this operator is non-selfadjoint, such as for the nonlinear Schrödinger (NLS) equation or the Ablowitz-Ladik equation. In 2001, M. Klaus and J. K. Shaw found symmetries and conditions on the potentials for the Zakharov-Shabat system (spectral problem for the NLS equation) for the eigenvalues to lie on the imaginary axis. In this talk, I will show which would be an equivalent to the Klaus-Shaw theorem for the Ablowitz-Ladik lattice. This is a work in progress. This is a joint work with P. Shipman (Colorado State University) and S. Shipman (Louisiana State University).