We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How to prove algorithmically the transcendence of D-finite power series

Formal Metadata

Title
How to prove algorithmically the transcendence of D-finite power series
Alternative Title
Algorithmic proof for the transcendence of D-finite power series
Title of Series
Number of Parts
23
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Given a sequence represented by a linear recurrence with polynomial coefficients and sufficiently many initial terms, a natural question is whether the transcendence of its generating function can be decided algorithmically. The question is non trivial even for sequences satisfying a recurrence of first order. An algorithm due to Michael Singer is sufficient, in principle, to answer the general case. However, this algorithm suffers from too high a complexity to be effective in practice. We will present a recent method that we have used to treat a non-trivial combinatorial example. It reduces the question of transcendence to a (structured) linear algebra problem.
Keywords