We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The achromatic number of Knesser graphs and their relationship with Steiner triple systems

Formal Metadata

Title
The achromatic number of Knesser graphs and their relationship with Steiner triple systems
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk we give the notion of complete colorings in graphs, achromatic number, Knesser graphs and Steiner triple systems . Also, we explain how the Steiner triple systems solve the problem about the existence of complete colorations on Knesser graphs that attain the upper bound of the achromatic number, where the achromatic number of a graph G is the maximum integer value for the number of chromatic classes in a complete and proper coloring of G.