We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Time-Dependent Quantum Mechanics: Ionized Electron Vortices Produced by Elliptically Polarized Attosecond Pulses

Formal Metadata

Title
Time-Dependent Quantum Mechanics: Ionized Electron Vortices Produced by Elliptically Polarized Attosecond Pulses
Alternative Title
Applications of Elliptically-Polarized, Few-Cycle Attosecond Pulses
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically-polarized attosecond pulses. For double ionization of He by an intense elliptically-polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse [1]. For single [2,3] and double ionization [4] of He by two oppositely circularly-polarized, time-delayed attosecond pulses, we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness [2-4]. These effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the two-electron time-dependent Schrödinger equation for the six-dimensional case of elliptically-polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. *This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646. [1] J.M. Ngoko Djiokap, N.L. Manakov, A.V. Meremianin, S.X. Hu, L.B. Madsen, and A.F. Starace, “Nonlinear dichroism in back-to-back double ionization of He by an intense elliptically-polarized few-cycle XUV pulse,” Phys. Rev. Lett. 113, 223002 (2014). [2] J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, and A.F. Starace, “Electron Vortices in Photoionization by Circularly Polarized Attosecond Pulses,” Phys. Rev. Lett. 115, 113004 (2015). <br/> [3] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Multistart Spiral Electron Vortices in Ionization by Circularly Polarized UV Pulses,” Phys. Rev. A 94, 013408 (2016). [4] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Kinematical Vortices in Double Photoionization of Helium by Attosecond Pulses,” Phys. Rev. A (accepted 19 June 2017, in press).