We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Non-adiabatic dynamics in graphene controlled by the carrier-envelope phase of a few-cycle laser pulse

00:00

Formal Metadata

Title
Non-adiabatic dynamics in graphene controlled by the carrier-envelope phase of a few-cycle laser pulse
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We numerically study the interaction of a terahertz pulse with monolayer graphene. We use a numerical solution of the two-dimensional Dirac equation in Fourier space with time-evolution based on split-operator method to describe the dynamics of electron-hole pair creation in graphene. We notice that the electron momentum density is affected by the carrier-envelope phase (CEP) of the few-cycle terahertz laser pulse that induces the electron dynamics. Two main features are observed: (1) interference pattern for any values of the CEP and (2) asymmetry, for non-zero values of the CEP. We explain the origin of the quantum interferences and the asymmetry within the adiabatic-impulse model by finding conditions to reach minimal adiabatic gap between the valence band and the conduction band in graphene. The quantum interferences emanate from successive non-adiabatic transitions at this minimal gap. We discuss how these conditions and the interference pattern are modified by the CEP. This opens the door to control fundamental time-dependent electron dynamics in the tunneling regime in Dirac materials. Also, this suggests a way to measure the CEP of a terahertz laser pulse when it interacts with condensed matter systems.