We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Eigenvalues of Doubly Stochastic Matrices, an Unfinished Story

Formal Metadata

Title
Eigenvalues of Doubly Stochastic Matrices, an Unfinished Story
Title of Series
Number of Parts
14
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
According to a long standing conjecture (sometimes called the Perfect-Mirsky conjecture), the geometric location of eigenvalues of doubly stochastic matrices of order $n$ is exactly the union of all regular $k$-gons with $2 \leq k\leq n$ and anchored at 1 in the closed unit disc. It is easy to verify this fact for $n =2$ and $n=3$. But, for $n\geq  4$, it was an open question at least since 1965. Mashreghi-Rivard (2007) showed that the conjecture is wrong for $n = 5$. Then Levick-Pereira-Kribs (2014) added to the mystery by showing that the conjecture is true for $n=4$. For $n \geq 6$, the loci of eigenvalues is unknown. They also came up with a new formulation of the conjecture.