We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Novel Method for Determining the Rank of a Matrix

Formal Metadata

Title
A Novel Method for Determining the Rank of a Matrix
Title of Series
Number of Parts
14
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
An $n$-by-$m$ Cauchon diagram $C$ is an $n$-by-$m$ grid consisting of $n∙m$ squares colored black and white, where each black square has the property that every square to its left (in the same row) or every square above it (in the same column) is black. Let $A=(a_{ij})$ be an $n$-by-$m$ matrix and $C$ an $n$-by-$m$ Cauchon diagram. Then we say that $A$ is a Cauchon matrix associated with the Cauchon diagram $C$ if for all $(i,j) \in \{1,…,n\} \times \{1,…,m\}$, we have $a_{ij}=0$ if and only if the corresponding square $(i,j)$ in $C$ is black. In this talk, we present a novel method for the determination of the rank of a matrix A and for checking a set of its consecutive row (or column) vectors for linear independence provided that the resulting matrix $\tilde{A}$ of the application of the condensed form of the Cauchon algorithm, see e.g., [2], is a Cauchon matrix. This method is also linked to the elementary bidiagonal factorization of a matrix under certain conditions [1]. This is joint work with Khawla Al Muhtaseb and Ayed Abdel Ghani (Palestine Polytechnic University, Hebron, Palestine), Shaun M. Fallat (University of Regina, Regina, Canada), and Juergen Garloff (University of Applied Sciences / HTWG Konstanz, and University of Konstanz, Konstanz, Germany). References: [1] M. Adm, K. Al Muhtaseb, A. Abedel Ghani, S. Fallat, and J. Garloff, A novel method for determining the rank of a matrix with application to bidiagonal factorization, submitted. [2] M. Adm and J. Garloff, Improved tests and characterizations of totally nonnegative matrices, Electron. J. Linear Algebra, 27, 588-610, 2014.