We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimal group testing designs for estimating prevalence with uncertain testing errors

Formal Metadata

Title
Optimal group testing designs for estimating prevalence with uncertain testing errors
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We construct optimal designs for group testing experiments where the goal is to estimate the prevalence of a trait using a test with uncertain sensitivity and specificity. Using optimal design theory for approximate designs, we show that the most efficient design for simultaneously estimating the prevalence, sensitivity, and specificity requires three different group sizes with equal frequencies. However, if estimating prevalence as accurately as possible is the only focus, the optimal strategy is to have three group sizes with unequal frequencies. Based on a Chlamydia study in the United States, we compare performances of competing designs and provide insights into how the unknown sensitivity and specificity of the test affect the performance of the prevalence estimator. We demonstrate that the proposed locally D- and Ds-optimal designs have high efficiencies even when the prespecified values of the parameters are moderately misspecified. Extensions on budget-constrained optimal group testing designs will also be discussed, where both subjects and tests incur costs, and assays have uncertain sensitivity and specificity that may be linked to the group sizes.