We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimal designs for longitudinal studies with fractional polynomial models

Formal Metadata

Title
Optimal designs for longitudinal studies with fractional polynomial models
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Fractional polynomials (FP) have been shown to be much more flexible than polynomials for fitting continuous outcomes in the biological and health sciences. Despite their increasing popularity, design issues for FP models have never been addressed. D- and I-optimal experimental designs will be computed for prediction using FP models. Their properties will be evaluated and a catalogue of design points useful for FP models will be provided. As applications, we consider linear mixed effects models for longitudinal studies. To provide greater flexibility in modeling the shape of the response, we use fractional polynomials and not polynomials to approximate the mean response. An example using gene expression data will be considered comparing the designs used in practice. An additional an interesting problem is finding designs for effective model discrimination for FP models. This will be explored from the KL-optimality point of view.