We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Continuous and discrete uncertainty principles

Formal Metadata

Title
Continuous and discrete uncertainty principles
Title of Series
Number of Parts
18
Author
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Uncertainty principles go back to the early years of quantum mechanics. Originally introduced to describe the impossibility for a function to be sharply localized in both the direct and Fourier spaces, localization being measured by variance, it has been generalized to many other situations, including different representation spaces and different localization measures. In this talk we first review classical results on variance uncertainty inequalities (in particular Heisenberg, Robertson and Breitenberger inequalities). We then focus on discrete (and in particular finite-dimensional) situations, where variance has to be replaced with more suitable localization measures. We then present recent results on support and entropic inequalities, describing joint localization properties of vector expansions with respect to two frames.
Keywords