We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Big Data, Downscaling, and Interdisciplinary Approaches to Understanding Extreme Events

Formal Metadata

Title
Big Data, Downscaling, and Interdisciplinary Approaches to Understanding Extreme Events
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In a world with rapid climactic change and intensifying extremes, it becomes increasingly important to improve predictive modeling. The Sustainability and Data Sciences Laboratory (SDS Lab) at Northeastern University in Boston, MA has taken an interdisciplinary approach to understanding interconnected complex systems using a combination of mathematical, scientific, engineering, and computational tools. Through the use of machine learning, statistics, physics, and nonlinear dynamical methods—such as chaos and complex networks—we have developed enhanced quantitative understandings of extremes and change in a way that can be translated so as to inform policy and create more resilient social systems. The focus of our research centers around risk and adaptation, resilience of critical infrastructure and lifeline networks, and sustainability of ecosystems and resources. This presentation provides an overview of the research done at the SDS Lab, including methodologies, the use of interdisciplinary approaches, and important trends and outputs being observed in our results.