We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A projection-based approach for spatial generalized linear mixed models

Formal Metadata

Title
A projection-based approach for spatial generalized linear mixed models
Title of Series
Number of Parts
16
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Non-Gaussian spatial data arise in a number of disciplines. Examples include spatial data on disease incidences (counts), and satellite images of ice sheets (presence-absence). Spatial generalized linear mixed models (SGLMMs), which build on latent Gaussian processes or Gaussian Markov random fields, are convenient and flexible models for such data and are used widely in mainstream statistics and other disciplines. For high-dimensional data, SGLMMs present significant computational challenges due to the large number of dependent spatial random effects. Furthermore, spatial confounding makes the regression coefficients challenging to interpret. I will discuss projection-based approaches that reparameterize and reduce the number of random effects in SGLMMs, thereby improving the efficiency of Markov chain Monte Carlo (MCMC) algorithms. Our approach also addresses spatial confounding issues. This talk is based on joint work with Yawen Guan (SAMSI) and John Hughes (U of Colorado-Denver).