We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Error bounds and convergence of proximal methods for composite minimization

Formal Metadata

Title
Error bounds and convergence of proximal methods for composite minimization
Title of Series
Number of Parts
30
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Minimizing a simple nonsmooth outer function composed with a smooth inner map offers a versatile framework for structured optimization. A unifying algorithmic idea solves easy subproblems involving the linearized inner map and a proximal penalty on the step. I sketch a typical such algorithm - ProxDescent - illustrating computational results and representative basic convergence theory. Although such simple methods may be slow (without second-order acceleration), eventual linear convergence is common. An intuitive explanation is a generic quadratic growth property - a condition equivalent to an "error bound" involving the algorithm's stepsize. The stepsize is therefore a natural termination criterion, an idea that extends to more general Taylor-like optimization models.