We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Uniqueness and existence results via Morse index for Lane Emden problems

Formal Metadata

Title
Uniqueness and existence results via Morse index for Lane Emden problems
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider the classical Lane Emden equation in bounded domains of the plane with Dirichlet boundary conditions and we present some results concerning the Morse index of solutions to this problem, when the exponent of the nonlinearity is large. Via these Morse index computations and a precise asymptotic analysis we can deduce a uniqueness result for positive solutions in convex domains and also some existence results of non-radial sign-changing solutions in the ball. Based on joint papers with M. Grossi, I. Ianni and F. Pacella.