We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Energy Optimality in Human Running

Formal Metadata

Title
Energy Optimality in Human Running
Subtitle
From "real-world" running preferences to their role in human-machine interaction
Alternative Title
Connecting the legs with a spring improves human running economy
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Spring-like tissues attached to the swinging legs of animals are thought to improve running economy by simply reducing the effort of leg swing. Here we show that a spring, or ‘exotendon,’ connecting the legs of a human runner improves economy instead through a more complex mechanism that produces savings during both swing and stance. The spring increases the energy optimal stride frequency; when runners adopt this new gait pattern, savings occur in both phases of gait. Remarkably, the simple device improves running economy by 6.4 ± 2.8%, comparable to savings achieved by motorized assistive robotics that directly target the costlier stance phase of gait. Our results highlight the importance of considering both the dynamics of the body and the adaptive strategies of the user when designing systems that couple human and machine. Authors: Cole S. Simpson, Cara G. Welker, Scott D. Uhlrich, Sean M. Sketch, Rachel W. Jackson, Scott L. Delp, Steve H. Collins, Jessica C. Selinger, and Elliot W. Hawkes