We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Dualizability in the factorization higher Morita category

Formal Metadata

Title
Dualizability in the factorization higher Morita category
Title of Series
Number of Parts
13
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk I will explain how one can use geometric arguments to obtain results on dualizablity in a "factorization version" of the Morita category. We will relate our results to previous dualizability results (by Douglas-Schommer-Pries-Snyder and Brochier-Jordan-Snyder on Turaev-Viro and Reshetikin-Turaev theories). We will discuss applications of these dualiability results: one is to construct examples of low-dimensional field theories "relative" to their observables. An example will be given by Azumaya algebras, for example polynomial differential operators (Weyl algebra) in positive characteristic and its center. (This is joint work with Owen Gwilliam.)