We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Parallel reduction of boundary matrices in Persistent Homology

Formal Metadata

Title
Parallel reduction of boundary matrices in Persistent Homology
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Topological Data Analysis is a relatively new paradigm in data-science that models datasets as point-clouds sampled from a shape embedded in an Euclidean space. The inference problem is to estimate the essential topological features of the underlying shape from a point-cloud sampled from it. This is done through a technique called persistent homology which is a mathematical formalism based on algebraic topology. A necessary step in the persistent homology pipeline is the reduction a so-called boundary matrix, which is a process reminiscent to Gaussian elimination. In this talk, I present a number of structural dependencies in boundary matrices and use them to design a novel parallel algorithm for their reduction, which is especially fit for GPUs. Simulations on synthetic examples show that the computational burden can be conducted in a small fraction of the number of iterations needed by traditional methods. For example, numerical experiments show that for a boundary matrix with 10^4 columns, the reduction completed to within 1% in about ten iterations as opposed to nearly approximately eight thousand iterations for traditional methods.