We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Understanding fluid-particle interaction in structured environments by Direct Numerical Simulation

Formal Metadata

Title
Understanding fluid-particle interaction in structured environments by Direct Numerical Simulation
Title of Series
Number of Parts
24
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Using a direct-forcing immersed boundary method (IBM) at fully resolved grid resolutions, we study the interaction between the fluid in the lid-driven cavity and ensuing response of a collection of identical cylindrical particles immersed in the cavity. The particles are fixed in lattice location but are free to rotate, and reach steady-state angular velocities under low to moderate Reynolds numbers. The goal is to find the effect of different lattice configurations on the dynamical response of the cylinders – particularly the angular velocities that develop spontaneously and the forces exerted on each of them by the fluid motion. Two lattices, one triangular and one rectangular, are considered. The two configurations exhibit quite different responses. The rectangular lattice contains two kinds of flow paths, an axis-aligned primary path, and a secondary path in the diagonal direction. This gives it a rich response to the fluid forcing as Reynolds number is increased. The triangular lattice only has one kind of flow path and behaves in a more consistent manner. By increasing the cylinder radius, the secondary path in the rectangular lattice can be eliminated. This qualitatively alters its nature and response to the fluid forcing, and could be considered as a phase transition.