We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data-Driven Two-Stage Linear Optimization: Feasibility and Approximation Guarantees

Formal Metadata

Title
Data-Driven Two-Stage Linear Optimization: Feasibility and Approximation Guarantees
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
An important and challenging class of two-stage linear optimization problems are those without relative-complete recourse, wherein there exists first-stage decisions and realizations of the uncertainty for which there are no feasible second-stage decisions. Previous data-driven methods for these problems, such as the sample average approximation (SAA), are asymptotically optimal but have prohibitively poor performance with respect to out-of-sample feasibility. In this talk, we present a data-driven method for two-stage linear optimization problems without relative-complete recourse which combines (i) strong out-of-sample feasibility guarantees and (ii) general asymptotic optimality. Our method employs a simple robustification of the data combined with a multi-policy approximation. A key contribution of this work is the development of novel geometric insights, which we use to show that the proposed approximation is asymptotically optimal. We demonstrate the benefit of using this method in practice through numerical experiments.