We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Online Resource Allocation under Partially Predictable Demand

Formal Metadata

Title
Online Resource Allocation under Partially Predictable Demand
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
For online resource allocation problems, we propose a new demand arrival model where the sequence of arrivals contains both an adversarial component and a stochastic one. Our model requires no demand forecasting; however, due to the presence of the stochastic component, we can partially predict future demand as the sequence of arrivals unfolds. Under the proposed model, we study the problem of the online allocation of a single resource to two types of customers, and design online algorithms that outperform existing ones. Our algorithms are adjustable to the relative size of the stochastic component, and our analysis reveals that as the portion of the stochastic component grows, the loss due to making online decisions decreases. This highlights the value of (even partial) predictability in online resource allocation. We impose no conditions on how the resource capacity scales with the maximum number of customers. However, we show that using an adaptive algorithm—which makes online decisions based on observed data—is particularly beneficial when capacity scales linearly with the number of customers. Our work serves as a first step in bridging the long-standing gap between the two well-studied approaches to the design and analysis of online algorithms based on (1) adversarial models and (2) stochastic ones. Using novel algorithm design, we demonstrate that even if the arrival sequence contains an adversarial component, we can take advantage of the limited information that the data reveals to improve allocation decisions. We also study the classical secretary problem under our proposed arrival model, and we show that randomizing over multiple stopping rules may increase the probability of success. (Based on joint work with Dawsen Hwang (Google) and Patrick Jaillet (MIT).)