We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data-Driven Chance Constrained Programs over Wasserstein Balls

Formal Metadata

Title
Data-Driven Chance Constrained Programs over Wasserstein Balls
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 1-norm or the ∞-norm, the cone is the nonnegative orthant, and the chance constrained program can be reformulated as a mixed-integer linear program. Using our reformulation, we show that two popular approximation schemes based on the conditional-value-at-risk and the Bonferroni inequality can perform poorly in practice and that these two schemes are generally incomparable with each other.