We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sasaki-Einstein structures and their compactification

Formal Metadata

Title
Sasaki-Einstein structures and their compactification
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Sasaki geometry is often viewed as an odd dimensional analogue of Kaehler geometry. In particular a Riemannian or pseudo-Riemannian manifold is Sasakian if its standard metric cone is Kaehler or, respectively, pseudo-Kaehler. We show that there is a natural link between Sasaki geometry and projective differential geometry. The situation is particularly elegant for Sasaki-Einstein geometries and in this setting we use projective geometry to provide the resolution of these geometries into “less rigid” components. This is analogous to usual picture of a Kaehler structure: a symplectic manifold equipped also with a compatible complex structure etc. However the treatment of Sasaki geometry this way is locally more interesting and involves the projective Cartan or tractor connection. This enables us to describe a natural notion of compactification for complete non-compact pseudo-Riemannian Sasakian geometries. For such compactifications the boundary at infinity is a conformal manifold with a Fefferman space structure—so it fibres over a CR manifold. This is nicely compatible with the compactification of the Kaehler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold.