We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Covering lattice points by subspaces and counting point-hyperplane incidences

Formale Metadaten

Titel
Covering lattice points by subspaces and counting point-hyperplane incidences
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let d and k be integers with 1 <= k <= d-1. Let Lambda be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in the intersection of Lambda with K. In particular, our results imply that the minimum number of kdimensional linear subspaces needed to cover the d-dimensional n * ... * n$ grid is at least Omega(n^(d(d-k)/(d-1)-epsilon)) and at most O(n^(d(d-k)/(d-1))), where epsilon > 0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book of Brass, Moser, and Pach. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer.