We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Space quartics, ordinary planes and coplanar quadruples

Formal Metadata

Title
Space quartics, ordinary planes and coplanar quadruples
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
It was shown by Raz-Sharir-De Zeeuw (2016) that the number of coplanar quadruples among n points on an algebraic curve in complex 3-space not containing a planar component or a component of degree 4, is O(n^{8/3}). We complement their result by characterizing the degree 4 space curves in which n points on the curve always have a subcubic number of coplanar quadruples. This also gives a characterization of the plane curves of degree 3 and 4 in which n points on the curve always have a subcubic number of concyclic quadruples. We use the 4-dimensional Elekes-Szabo theorem of Raz-Sharir-De Zeeuw and some old results from classical invariant theory. Simeon Ball (2016) showed that a set spanning real 3-space, no 3 collinear, with only Kn^2 ordinary planes, lies on the intersection of two quadrics, up to O(K) points. His proof is based on results of Green and Tao, and also generalizes their proof to 3-space. We find a significant simplification of his proof that avoids 3-dimensional dual configurations, using Bezout's theorem and the above-mentioned results from classical invariant theory.