We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Higher solutions of Hitchin's self-duality equations

Formal Metadata

Title
Higher solutions of Hitchin's self-duality equations
Title of Series
Number of Parts
15
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Solutions of Hitchin's self-duality equations correspond to special real sections in the Deligne-Hitchin moduli space -- twistor lines. A question posed by Simpson in 1995 asks whether all real sections give rise to global solutions of the self-duality equations. An armative answer would allow for complex analytic procedure to obtain solutions of the self- duality equations. The purpose of my talks is to explain the construction of counter examples given by certain (branched) Willmore surfaces in 3-space (with monodromy) via the generalized Whitham flow. Though these higher solutions do not give rise to global solutions of the self- duality equations on the whole Riemann surface M, they are solutions on an open dense subset of it. This suggest a deeper connection between Willmore surfaces, i.e., a rank 4 harmonic map theory, with the rank 2 self-duality theory.