We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Formal Analysis of Deep Binarized Neural Networks

Formal Metadata

Title
Formal Analysis of Deep Binarized Neural Networks
Title of Series
Number of Parts
28
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Understanding properties of deep neural networks is an important challenge in deep learning. Deep learning networks are among the most successful artificial intelligence technologies that is making impact in a variety of practical applications. However, many concerns were raised about `magical' power of these networks. It is disturbing that we are really lacking of understanding of the decision making process behind this technology. Therefore, a natural question is whether we can trust decisions that neural networks make. One way to address this issue is to define properties that we want a neural network to satisfy. Verifying whether a neural network fulfills these properties sheds light on the properties of the function that it represents. In this work, we take the verification approach. Our goal is to design a framework for analysis of properties of neural networks. We start by defining a set of interesting properties to analyze. Then we focus on Binarized Neural Networks that can be represented and analyzed using well-developed means of Boolean Satisfiability and Integer Linear Programming. One of our main results is an exact representation of a binarized neural network as a Boolean formula. We also discuss how we can take advantage of the structure of neural networks in the search procedure.