We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Strongly minimal Steiner systems Paleolithic Stability theory

Formale Metadaten

Titel
Strongly minimal Steiner systems Paleolithic Stability theory
Alternativer Titel
On strongly minimal Steiner systems
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
With Gianluca Paolini (in preparation), we constructed families of strongly minimal Steiner (systemsforeveryk 3.Aquasigroupisastructurewithabinaryoperationsuchthatforeachequationxy=zthevaluesoftwoofthevariablesdeterminesauniquevalueforthethird.Hereweshowthatthe2^{ Steiner (2,3)-systems are definably coordinatized by strongly minimal Steiner quasigroups and the Steiner (2,4)-systems are definably coordinatized by strongly minimal SQS-Skeins. Further the Steiner (2,4)-systems admit Stein quasigroups but depending on the choice of theory may or may not admit a definable binary function and be definably coordinatized by an Steinquasigroup.WeexhibitstronglyminimaluniformSteinertriplesystems(withrespecttotheassociatedgraphsG(a,b)(CameronandWebb)withvaryingnumbersoffinitecycles.Weshowhowtovarythetheorytoobtain2or3$-transitivity. This work inaugurates a program of differentiating the many strongly minimal sets, whose geometries of algebraically closed sets may be (locally) isomorphic to the original Hrushovski example, but with varying properties in the object language. In particular, can one organize these geometries by studying the associated algebra. This work differs from traditional work in the infinite combinatorics of Steiner systems by considering the relationship among different models of the same first order theory.