We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Metrics on Dynamic Graphs (and lower bounds via Zigzag Persistence)

Formal Metadata

Title
Metrics on Dynamic Graphs (and lower bounds via Zigzag Persistence)
Alternative Title
Metrics on the collection of dynamic shapes
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of groups of animals. In a similar vein, when attempting to classify motion capture data according to action one is confronted with having to match/compare shapes that evolve with time. Motivated by these applications, we study the question of suitably metrizing the collection of all dynamic metric spaces (DMSs). We construct a suitable metric on this collection and prove the stability of several natural invariants of DMSs under this metric. In particular, we prove that certain zigzag persistent homology invariants related to dynamic clustering are stable w.r.t. this distance. These lower bounds permit the efficient classification of dynamic shape data in applications. We will show computational experiments on dynamic data generated via distributed behavioral models.
Keywords