We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Lefschetz properties of fiber products and connected sums

Formal Metadata

Title
Lefschetz properties of fiber products and connected sums
Title of Series
Number of Parts
19
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The Lefschetz properties are desirable algebraic properties of graded artinian algebras inspired by the Hard Lefschetz Theorem for cohomology rings of complex projective varieties. A standard way to create new varieties from old is by forming connected sums. This corresponds at the level of their cohomology rings to an algebraic operation also termed a connected sum, which has recently started to be investigated in commutative algebra by Ananthnarayan-Avramov-Moore. It is natural to ask whether abstract algebraic connected sums of graded Gorenstein artinian algebras enjoy the Lefschetz properties in the absence of any underlying topological information. We investigate this question as well as the analogous question concerning a closely related construction, the fibered product.