We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Entropic concavity and positive energy

Formal Metadata

Title
Entropic concavity and positive energy
Title of Series
Number of Parts
31
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
On a Riemannian manifold, lower Ricci curvature bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric measure setting, where they have found powerful applications. In this talk I describe the development of an analogous theory for lower Ricci curvature bounds in time-like directions on a Lorentzian manifold. In particular, by lifting fractional powers of the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, I show the strong energy condition of Penrose is equivalent to geodesic concavity of the Boltzmann-Shannon entropy there.