We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

New Analysis of Fully Discrete FEMs for Nonlinear Parabolic PDEs

Formal Metadata

Title
New Analysis of Fully Discrete FEMs for Nonlinear Parabolic PDEs
Alternative Title
New Analysis on Galerkin FEMs for Nonlinear Parabolic PDEs
Title of Series
Number of Parts
21
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Linearized (semi)-implicit schemes are the most commonly-used approximations in numerical solution of nonlinear parabolic equations since at each time step, the schemes only require the solution of a linear system. However the time step restriction condition of schemes is always a key issue in analysis and computation. For many nonlinear parabolic systems, error analysis of Galerkin type finite element methods with linearized semi-implicit schemes in the time direction is established usually under certain time step condition τ≤hα for some α>0. Such a time-step condition may result in the use of a very small time step and extremely time-consuming in practical computations. The problem becomes more serious when a non-uniform mesh or adaptive meshing is used. In this talk, we introduce a new approach to unconditional error analysis of linearized semi-implicit Galerkin FEMs for a large class of nonlinear parabolic PDEs.