We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity

Formal Metadata

Title
Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity
Title of Series
Number of Parts
26
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This talk is devoted to confront two different approaches to the problem of dynamic perfect plasticity. Interpreting this model as a constrained boundary value Friedrichs' system enables one to derive admissible hyperbolic boundary conditions. Using variational methods, we show the well-posedness of this problem in a suitable measure theoretic setting. We prove that this unique variational solution actually coincides with the unique entropic solution of the hyperbolic formulation. Finally, thanks to the finite speed propagation property, we establish a new short time regularity result for the solution.