We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Learning Invariants and Representation Spaces of Shapes and Forms

00:00

Formal Metadata

Title
Learning Invariants and Representation Spaces of Shapes and Forms
Alternative Title
Invariant Representations of Shapes and Forms: Self Functional Maps
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A classical approach for surface classification is to find a compact algebraic representation for each surface that would be similar for objects within the same class and preserve dissimilarities between classes. We introduce self functional maps as a novel surface representation that satisfies these properties, translating the geometric problem of surface classification into an algebraic form of classifying matrices. The proposed map transforms a given surface into a universal isometry invariant form defined by a unique matrix. The suggested representation is realized by applying the functional maps framework to map the surface into itself. The key idea is to use two different metric spaces of the same surface for which the functional map serves as a signature. Specifically, in this lecture, we suggest the regular and the scale invariant surface laplacian operators to construct two families of eigenfunctions. The result is a matrix that encodes the interaction between the eigenfunctions resulted from two different Riemannian manifolds of the same surface. Using this representation, geometric shape similarity is converted into algebraic distances between matrices. In contrast to geometry understanding there is the emerging field of deep learning. Learning systems are rapidly dominating the areas of audio, textual, and visual analysis. Recent efforts to convert these successes over to geometry processing indicate that encoding geometric intuition into modeling, training, and testing is a non-trivial task. It appears as if approaches based on geometric understanding are orthogonal to those of data-heavy computational learning. We propose to unify these two methodologies by computationally learning geometric representations and invariants and thereby take a small step towards a new perspective on geometry processing. If time permits I will present examples of shape matching, facial surface reconstruction from a single image, reading facial expressions, shape representation, and finally definition and computation of invariant operators and signatures.