We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Double-Parallel Monte Carlo for Bayesian Analysis of Big Data

Formal Metadata

Title
Double-Parallel Monte Carlo for Bayesian Analysis of Big Data
Title of Series
Number of Parts
10
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This paper proposes a simple, practical and efficient MCMC algorithm for Bayesian analysis of big data. The proposed algorithm suggests to divide the big dataset into some smaller subsets and provides a simple method to aggregate the subset posteriors to approximate the full data posterior. To further speed up computation, the proposed algorithm employs the population stochastic approximation Monte Carlo (Pop-SAMC) algorithm, a parallel MCMC algorithm, to simulate from each subset posterior. Since this algorithm consists of two levels of parallel, data parallel and simulation parallel, it is coined as “Double Parallel Monte Carlo”. The validity of the proposed algorithm is justified mathematically and numerically.