We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Time-dependent hydraulic fracture initiation and propagation

Formal Metadata

Title
Time-dependent hydraulic fracture initiation and propagation
Title of Series
Number of Parts
24
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In engineering design for multi-stage HF treatments of horizontal well stimulation, it is ideal to promote simultaneous growth of all fractures in each stage in order to reduce the number of non-producing perforation clusters. While increased attention has been given to studies of multiple HF growth, time dependence is not typically considered as a factor affecting the HF initiation and following growth. A combined experimental and modeling study is carried out to explore the occurrence of the time-dependent initiation of single/multiple hydraulic fracture(s) and their subsequent propagation. By showing the existence of HF initiation at wellbore pressures that are insufficient to induce instantaneous initiation, and explaining that its underlying mechanism is due to the stable growth of the hydraulic fracture under subcritical conditions, this research leads to new insights for promoting more evenly growth of multiple hydraulic fractures in multi-stage HF treatments. Furthermore, our experimental results indicate that the time delay associated with hydraulic fracture initiation can be affected by various factors, such as the fluid viscosity and acidity, and the confining stresses, thereby leading to the practically-relevant outcome that fluid(s) can be chosen in order to promote initiation and growth of multiple hydraulic fractures and/or single hydraulic fractures under conditions where the required wellbore pressure for instantaneous initiation cannot be reached.