We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Energy-based methods for time-dependent acoustic and elastic wave propagation

Formal Metadata

Title
Energy-based methods for time-dependent acoustic and elastic wave propagation
Title of Series
Number of Parts
26
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Weight-adjusted inner products are easily invertible approximations to weighted L2 inner products and mass matrices. These approximations make it possible to formulate very simple time-domain discontinuous Galerkin (DG) discretizations for wave propagation based on the the energy of the system. The resulting methods are low storage, energy stable, and high-order accurate for acoustic and elastic wave propagation in arbitrary heterogeneous media and curvilinear meshes. We conclude with numerical results confirming the stability and high-order accuracy of weight-adjusted DG for acoustic, elastic, and coupled acoustic-elastic waves.