We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Water vapour and rain dynamics in precipitating turbulent convection

Formal Metadata

Title
Water vapour and rain dynamics in precipitating turbulent convection
Title of Series
Number of Parts
26
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Simulations of precipitating convection are usually carried out with cloud resolving models, which typically represent all the different phases of water: water vapor, cloud water, rain water and ice. Here we investigate the question: what is the minimal possible representation of water processes that is sufficient for these models? The simplified models that we present use a Boussinesq approximation, assume fast auto conversion and neglect ice. To test the simplified models, we present simulations of squall lines and scattered convection and show that they qualitatively capture observations made in nature and also seen in more comprehensive cloud resolving models, such as propagation of squall lines with tilted profiles, cold pools, and scattered convection.