We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analysis of the Dynamics of Immersed Elastic Filaments in Stokes Flow

Formal Metadata

Title
Analysis of the Dynamics of Immersed Elastic Filaments in Stokes Flow
Title of Series
Number of Parts
26
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Problems in which immersed elastic structures interact with the surrounding fluid abound in science and engineering. Despite their scientific importance, analysis and numerical analysis of such problems are scarce or non-existent. In this talk, we consider the problem of an elastic filament immersed in a 2D or 3D Stokes fluid. We first discuss our recent results on the analysis of the immersed filament problem in a 2D Stokes fluid (the Peskin problem). We prove well-posedness and immediate regularization of the elastic filament configuration, and discuss the implication of these results for numerical analysis. We will then discuss the immersed filament problem in a 3D Stokes fluid (the Slender Body problem). Here, it has not even been clear what the appropriate mathematical formulation of the problem should be. We propose a mathematical formulation for the Slender Body problem and discuss well-posedness for the stationary version of this problem. Furthermore, we prove that the Slender Body approximation, introduced by Keller and Rubinow in the 1980's and used widely in the fluid-structure interaction community, provides an approximation to the Slender Body problem with some error bound. This is joint work with Analise Rodenberg, Laurel Ohm and Dan Spirn.