We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Simple Solver for Simulating Fluid-Structure Interactions in 2D

Formal Metadata

Title
A Simple Solver for Simulating Fluid-Structure Interactions in 2D
Title of Series
Number of Parts
26
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We propose a fully eulerian model for simulating the interaction of fluid-fluid and fluid-solid structures for incompressible fluids and a black-box type numerical scheme for computing its solution. The physical model consists of two Hamilton-Jacobi type PDEs: the fluid-fluid and fluid-solid interfaces are implicitly tracked by a level set equation, and the fluid motion is modeled by the vorticity formulation of Navier-Stokes equation, also of Hamilton-Jacobi type. This approach simplifies the task by allowing us to implement a single numerical scheme for solving both equations. We present the proposed scheme along with several numerical experiments simulating the coalescence of gas bubbles and the oscillations of an elastic membrane that demonstrate the simplicity and robustness of this approach.