We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Stokes problem, controlability and radial basis function methods

Formal Metadata

Title
Stokes problem, controlability and radial basis function methods
Title of Series
Number of Parts
26
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Radial basis functions are highly effective meshfree methods for the solution of PDEs problems. In this talk, we first solve a stationary and evolutionary Stokes problem by global and local divergence free RBFs techniques. We prove that, unlike global techniques, local methods are capable of solving large PDEs Stokes problem in an efficient way. We then, use these RBFs methods to solve null control problems for the Stokes system with few internal scalar controls, which are supported in small sets. We recall, that up to the best of our knowledge, Stokes control problems have not been treated in the literature by radial basis functions (RBFs) methods. The RBFs results are compared with classical mixed finite element methods, proving that the proposed meshfree techniques are competitive and more flexible, due to the lack of mesh, than these classical techniques. We close the talk with some open problems and perspectives in this field. Coauthors: Louis David Breton & Cristhian Montoya