We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The distinguishing number of semiprimitive groups

Formale Metadaten

Titel
The distinguishing number of semiprimitive groups
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The distinguishing number of a permutation group G≤\Sym(X) is the smallest number of colours required to colour the points of X such that only the identity of G preserves the colouring. The distinguishing number of a graph, in the traditional sense, is simply the distinguishing number of its automorphism group. Seress proved that every primitive group of degree n other than \Alt(n) and \Sym(n) has distinguishing number 2, except for a short list of known examples (with distinguishing number 3 or 4). In this talk, I will overview previous work on the distinguishing number of groups, before discussing recent joint work with Alice Devillers and Luke Morgan on the distinguishing number of semiprimitive groups. I will highlight the application of our result to graphs.