We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Comparing Bing US Buildings with OpenStreetMap

Formale Metadaten

Titel
Comparing Bing US Buildings with OpenStreetMap
Serientitel
Anzahl der Teile
70
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Comparing continental scale vector datasets can be challenging. Azavea compared the 125 million US building footprints released from Bing with the 28 million building footprints found in OpenStreetMap for the USA. This was in effort to test VectorPipe, an open source library developed at Azavea that supports working with OpenStreetMap (OSM) vector data, and is powered by GeoTrellis and Apache Spark. VectorPipe produces a Spark DataFrame containing columns of JTS Geometry objects, enabled by the user-defined types provided by GeoMesa. For visualization purposes, this data is converted to Vector Tiles. This demonstration utilizes a couple of different building matching algorithms to show: (1) which buildings are only present in OpenStreetMap, (2) Only present in Bing or (3) present in both. The technique can be used to compare other large scale polygonal vector datasets. This talk will provide an overview of the open source tools used to generate these results in addition to discussing other processing techniques for doing large scale vector processing at scale using VectorPipe.