We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On the mathematical modeling of crystal facets: A PDE approach with a touch of discreteness

Formal Metadata

Title
On the mathematical modeling of crystal facets: A PDE approach with a touch of discreteness
Title of Series
Number of Parts
24
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Advances in materials science have enabled the observation and control of microstructures such as nanoscale defects with remarkable precision. In this talk, I will discuss recent progress and open challenges in understanding how small-scale details in the kinetics of crystal surfaces can macroscopically influence the surface morphological evolution. In particular, the evolution of crystal surface plateaus, facets, is characterized by an effective behavior at the macroscale that is not necessarily only the outcome of averaging, but instead may be dominated by certain discrete (microscopic) events. This "idiosyncrasy" of facet evolution raises challenging but interesting mathematical questions. My talk will explore via selected examples and methods how the kinetics of microscale defects near facets can plausibly leave their imprints to continuum-scale problems, at larger scales. The main tool is a fourth-order nonlinear PDE for the surface height profile. I will address and provide an answer to the question: Can this continuum description be reconciled with the motion of line defects (steps) at the nanoscale, and how?