We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On a diffuse interface approach to PDEs on surfaces and networks

Formal Metadata

Title
On a diffuse interface approach to PDEs on surfaces and networks
Title of Series
Number of Parts
24
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Diffuse interface models based on the phase field methodology have been developed for various free boundary problems. They involve representing the interfaces by thin layers. Some applications feature phenomena on the interfaces described by PDEs for interface resident fields. We will address the questions of how to model such phenomena in the diffuse interface setting and how to numerically approximate the solutions, which may require special consideration due to degeneracies. The approach can be generalised to networks and bubble clusters. One key challenge then is to correctly recover the conditions in the triple junctions formed by three interfaces. The research is motivated by surface active agents (surfactants) in multi-phase flow which can be effectively modelled by Cahn-Hilliard-Navier-Stokes systems. Some preliminary results for a novel numerical scheme will be presented, as well as some simulations to support the theoretical findings.