We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Perturbative calculations in QFT and the Laporta algorithm

Formal Metadata

Title
Perturbative calculations in QFT and the Laporta algorithm
Title of Series
Number of Parts
15
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In searches for new phenomena in particle physics, we are often interested in observing tiny deviations from the Standard Model (SM) predictions. In consequence, the SM predictions must be known very precisely. This is often a challenge even in situations when purely perturbative calculations are sufficient. At present, the most powerful methods amount to expressing the observables of interest in terms of so-called Master Integrals (MIs). The MIs are not being evaluated directly but rather via solving systems of differential equations. In the process of finding the MIs via the Laporta algorithm, large numbers (often billions) of linear equations need to be generated and solved, with simplifications of complicated rational functions at each step. In consequence, even the most powerful present-day computer clusters are sometimes insufficient. The situation could radically improve if a clever mathematical solution of the considered algebraic problem could be found in general.