We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

3-dimensional topology and polycontinuous pattern

Formal Metadata

Title
3-dimensional topology and polycontinuous pattern
Title of Series
Number of Parts
25
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Block copolymers produce spherical, cylindrical, lamellar and bicontinuous patterns as microphase-separated structures. Typical examples of bicontinuous patterns are Gyroid, D-surface and P-surface. A mathematical model of such a structure is a triply periodic non-compact surface embedded in the 3-dimensional space which divides it into two possibly disconnected submanifolds. We will consider the case where submanifolds are open neighborhood of networks. Here a network means an infinite graph embedded in the 3-dimensional space. In this case the bicontinuous pattern is uniquely determined by networks up to isotopy. We say such a bicontinuous pattern is associated to a network. On the other hand, for example triblock-arm star-shaped molecules yields a tricontinuous pattern. One mathematical model of such a tricontinuous (resp. poly-continuous) pattern is a triply periodic non-compact multibranched surface (or more generally polyhedron) dividing it into 3 (resp. several) possibly disconnected non-compact submanifolds. We assume that each submanifold is the open neighborhood of three (resp. several) networks. We call such a multibranched surface a tricontinuous pattern(resp. poly-continuous pattern). The relation between poly-continuous patterns and networks is not obvious in this case. Two different poly-continuous patterns are associated to one network and vice versa. In this talk we will give a condition for poly-continuous patterns to give the same network. We will also show that two poly-continuous patterns can be related by a finite sequence of moves and discuss further applications.