We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Crack computing with Discrete Element Methods

Formal Metadata

Title
Crack computing with Discrete Element Methods
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Since their first use by Hoover et al (1974) in models for crystalline materials and Cundall & Strack (1979) in geotechnical problems, Discrete Elements Methods (DEM) have found a large field of applications in granular materials, soil and rock mechanics by allowing to compute materials' strain and cracking in a unified framework. This talk will present a possible formalization of DEM leading to a general discretization method for PDEs and allowing to write convergence proofs. Also several strategies for computing cracking under dynamical loading with DEM will be presented and their methodology compared to phase-field methods.