We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A variational phase-field approach to fatigue in brittle materials

00:00

Formal Metadata

Title
A variational phase-field approach to fatigue in brittle materials
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A novel variational framework to model the fatigue behavior of brittle materials based on a phase-field approach to fracture is presented. The standard regularized free energy functional is modified introducing a fatigue degradation function that effectively reduces the fracture toughness as a proper history variable accumulates. This macroscopic approach allows to reproduce the main known features of fatigue crack growth in brittle materials. Numerical experiments show that the Wöhler curve, the crack growth rate curve and the Paris law are naturally recovered, while the approximate Palmgren-Miner criterion and the monotonic loading condition are obtained as special cases.