We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How are missing data handled in observational time-to-event studies? A systematic review

Formal Metadata

Title
How are missing data handled in observational time-to-event studies? A systematic review
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Missing data in covariates are known to result in biased estimates of association with the outcome and loss of power to detect associations. Missing data can also lead to other challenges in time-to-event analyses including the handling of time-varying effects of covariates, selection of covariates and their flexible modelling. This review aimed to understand how researchers are approaching time-to-event analyses when missing data are present. Medline and Embase were searched for observational time-to-event studies published from January 2011 to January 2018. We assessed the covariate selection procedure, assumptions of proportional hazards models, if functional forms were considered and how missing data affected this. We recorded the extent of missing data and how it was addressed in the analysis, for example using a complete-case analysis or multiple imputation. 148 studies were included in the review. On average, 15% of data were discarded due to missingness while determining the study population and 32% during the analysis stage. In total, 86% did not state any missing data assumptions. Complete-case analysis was common (56%) while 22% used multiple imputation.