We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fundamental limits to electromagnetic response by convexity, causality, and duality

Formal Metadata

Title
Fundamental limits to electromagnetic response by convexity, causality, and duality
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Nanophotonics is developing at a rapid pace, with ever more materials, form factors, and structural degrees of freedom now available. These large design spaces offer transformative technological possibility, but optimization subject to the nonconvex Maxwell-equation constraint is difficult. And incorporation of extraneous constraints such as fabrication tolerance further stymie various analytical approaches. I will discuss optimization concepts and physical insights that lead to global bounds, and structures that nearly achieve them, for three applications: (1) spontaneous emission, where causality and convexity can be united to identify power-bandwidth limits, (2) superresolution, where various physical relaxations lead to an analytically tractable quadratically constrained quadratic program, and (3) minimal mode volume, where we leverage Lagrangian duality for computational bounds that seamlessly incorporate fabrication-tolerance and multi-frequency-design constraints.